Imagine that you have discovered a wonderful property on which to build your dream home. It may be located in a wooded area, many trees, with great views of the nearby lake, surrounded by boulders and other natural landscape. You may have an idea about the size and shape of your new home; you may even know how many bedrooms and bathrooms, and what size garage would be appropriate for your family and your lifestyle. What would you do next? Hire a bulldozer, cut down the trees, level the property and start digging the foundation for your future home? Of course not, as this would be foolish. To build your dream home, it would be proper to hire an architect and an engineer, and do a geographical survey to assess the property first. Every millimetre would be accounted for, and all of the materials required to build the home inside and out would be determined prior to a shovel even touching the ground. Furthermore, it would likely be necessary for the town or city to review the architectural plans, or blueprints, for approval and proper zoning based on the laws of the land. In order to build the supporting foundation at the correct depth and width, the water table would need to be assessed, and the potential need for dynamite to remove huge boulders from under the earth may lead to extra material and labour costs. Only once all of this information has been assimilated, registered and approved, and the finances are in place can the actual building commence.

When we are assessing our patients for dental implants, orthodontics, oral surgery, or other invasive procedures, we must consider ourselves the architects and engineers of the oral cavity. Prior to touching the scalpel to the patient, it is our obligation to utilise the necessary state-of-the-art tools to assess the patient landscape, which of course includes the bone, adjacent vital structures, soft tissue, teeth, potential implant recipient sites, the need for bone grafting, pathology, and appreciation of the existing occlusion. While clinical experience is of utmost importance, it is of paramount importance to start with the best diagnosis to formulate the treatment plan. Cone beam computed tomography (CBCT) is an essential tool to help clinicians assess each patient, account for every anatomical millimetre, and develop an appropriate plan of treatment that considers all of the procedures that can benefit from a 3-D assessment, thereby removing the guesswork from treatment. CBCT combined with today's powerful interactive treatment planning software empowers clinicians to provide the basic and necessary blueprints for proper patient care.

Within the pages of this issue of cone beam International Magazine, some of the best minds in our industry have shared their treatment concepts for various multi-specialty patient presentations, based upon the knowledge gained from 3-D CBCT data. Join us for another issue and follow the evolution of technology that allows us to provide our patients with blueprints for success.

Dr Scott D. Ganz

Editor-in-Chief